Supplement for DataColada[76]

This version: 2019 04 29 Written by Uri Simonsohn (<u>urisohn@gmail.com</u>)

I. Maluma-Takiti example (get everything: .zip)

- 1) Survey (.<u>qsf</u> | .<u>pdf</u>)
- 2) Data: Wave 1 (.csv) updated after post with stimuli order information
- 3) Data: Wave 2 (.<u>csv</u>) updated after post with stimuli order information
- 4) R Code (<u>.R</u>) For Figures 1 & 2 in post, and bootstrap under the null

II. Probability I² >0 under homogeneity is at least 40%

This <u>**R** Code</u> reports Monte Carlo simulations that support that.

III. Re-analysis of Klein et al Many Labs, MTurk sample, across days

The post notes that while McShane et al interpreted $I^2=21\%$ in the Klein et al Many Labs paper, MTurk sample, as "non-trivial" heterogeneity, such number is slightly *below* what's expected under homogeneity (E(I^2)=24\%).

<u>R Code</u>

IV. Ebersole et al. overall p-value for heterogeneity

The post reports, in Table 1, an average heterogeneity of 12.9%, p=.17, for the 16 studies in Ebersole et al.

<u>R Code</u>

Note: as mentioned in the post, Table 4 in Ebersole et al. almost surely reports results obtained with a coding error that noticeably increase heterogeneity, the correct overall *p*-value for heterogeneity in that sample is much higher than p=.17

V. Links to Many Labs papers in Table 1

Table 1. These are Many Labs results not cited in papers claiming heterogeneity is unavoidable

Paper	Торіс	Heterogeneity Resul	ts	Paper
O'Donnell et al (2018)	Professor priming and trivial pursuit	l ² = 17.4%	p = .170	. <u>pdf</u>
Bouwmeester et al (2017)	Contribution of \$ to common project	l ² = 2.7%	p = .660	. <u>pdf</u>
Cheung et al (2017)	Response to betrayal in relationship	l ² = 3.1%	p = .496	. <u>pdf</u>
Verschuere et al (2018)	Moral reminders and cheating behavior	$l^2 = 0.0\%$	p = .780	. <u>pdf</u>
Alogna et al (2016) - Design 1	Does describing a suspect reduce recognitio	n? l ² = 0.0%	p = .502	. <u>pdf</u>
Alogna et al (2016) - Design 2	Does describing a suspect reduce recognitio	n? $I^2 = 0.0\%$	p = .810	(same)
Ebersole et al (2016)	16 different designs (average, Stouffer's p)	$l^2 = 12.8\%$	p = .170	. <u>pdf</u>